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Abstract An extension of the Born rule, the quantum typicality rule, has recently been
proposed [B. Galvan in Found. Phys. 37:1540–1562 (2007)]. Roughly speaking, this rule
states that if the wave function of a particle is split into non-overlapping wave packets, the
particle stays approximately inside the support of one of the wave packets, without jumping
to the others.

In this paper a formal definition of this rule is given in terms of imprecise probability. An
imprecise probability space is a measurable space (Ω,A) endowed with a set of probability
measures P . The quantum formalism and the quantum typicality rule allow us to define a
set of probabilities PΨ on (XT ,F), where X is the configuration space of a quantum sys-
tem, T is a time interval and F is the σ -algebra generated by the cylinder sets. Thus, it
is proposed that a quantum system can be represented as the imprecise stochastic process
(XT ,F,PΨ ), which is a canonical stochastic process in which the single probability mea-
sure is replaced by a set of measures. It is argued that this mathematical model, when used
to represent macroscopic systems, has sufficient predictive power to explain both the results
of the statistical experiments and the quasi-classical structure of the macroscopic evolution.

Keywords Quantum mechanics · Quantum foundations · Quantum probability · Imprecise
probability · Typicality · Randomness

1 Introduction

Stochastic processes are the standard tools provided by probability theory to represent sys-
tems subjected to random evolution. In spite of the fact that quantum mechanics is a prob-
abilistic theory, the presence of quantum interference prevents the standard formalism of
quantum mechanics to represent a quantum system as a stochastic process.

In order to understand this, let us consider the most general version of a stochastic
process, namely the canonical stochastic process. Let X be the configuration space of a
system of particles (for example R

3N ) and B its Borel σ -algebra. Moreover, let T be a
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suitable time interval including the origin, and let XT denote the set of all the trajectories
λ : T → X. Given Δ ∈ B and t ∈ T , let (t,Δ) denote the set {λ ∈ XT : λ(t) ∈ Δ}. The sets
of this kind will be referred to as s-sets (an abbreviated name for single-time cylinder-sets);
let S denote the class of the s-sets. A canonical stochastic process is the triple (XT ,F,P ),
where F is the σ -algebra generated by the s-sets (or equivalently, by the cylinder sets) and
P is a probability measure on F . According to the Kolmogorov reconstruction theorem,
the probability P is univocally determined by its finite dimensional distributions, i.e. by its
values at the finite intersections of s-sets:

P [(t1,Δ1) ∩ · · · ∩ (tn,Δn)]. (1)

Since P is a probability measure, this expression is additive, i.e., if Δi ∩ Δ′
i = ∅, we have

P [· · · ∩ (ti ,Δi ∪ Δ′
i ) ∩ · · ·] = P [· · · ∩ (ti ,Δi) ∩ · · ·] + P [· · · ∩ (ti ,Δ

′
i ) ∩ · · ·].

The physical interpretation of a canonical stochastic process is simple: the evolution of the
system of particles during the time interval T is represented by a trajectory chosen at random
from XT .

Let us now attempt to represent a system of quantum particles as a canonical stochastic
process. In the quantum case as well, we can take X as the configuration space and, for the
time being, let us assume that also in the quantum case the particles follow a trajectory of
XT . The problem is then to define the probability P , i.e. to find a quantum expression for
the finite dimensional distributions (1).

We know that a normalized wave function Ψ (t) = U(t)Ψ0 is associated with the quantum
system, where U(t) is the unitary time evolution operator and Ψ0 is the wave function of
the system at the time t = 0. According to the Born rule, the probability of finding the
particles in the region Δ ∈ B at the time t is ‖E(Δ)Ψ (t)‖2, where E(·) is the projection
valued measure on B. In other words, we can say that ‖E(Δ)Ψ (t)‖2 is the probability that
a trajectory chosen at random from XT belong to the s-set (t,Δ). Thus for n = 1 we have a
valid quantum expression for (1), namely

P [(t,Δ)] = ‖E(Δ)Ψ (t)‖2. (2)

The problems arise when n > 1. A tentative quantum expression for (1) could be

‖E(Δn)U(tn − tn−1)E(Δn−1) · · ·U(t2 − t1)E(Δ1)Ψ (t1)‖2, (3)

where the assumption is made that t1 ≤ · · · ≤ tn. According to the Born rule and to the re-
duction postulate, (3) is the probability of finding the particles in the regions Δi at the times
ti , for i = 1, . . . , n. However (3) is not an admissible expression for the finite dimensional
distributions, because it is not additive, i.e. if Δi ∩ Δ′

i = ∅, in general we have

‖ · · ·E(Δi ∪ Δ′
i ) · · ·Ψ (t1)‖2 
= ‖ · · ·E(Δi) · · ·Ψ (t1)‖2 + ‖ · · ·E(Δ′

i ) · · ·Ψ (t1)‖2.

The non-additivity of (3) corresponds to the well known interference phenomena of quantum
mechanics. Another possible expression, namely:

Re〈Ψ (tn)|E(Δn)U(tn − tn−1)E(Δn−1) · · ·E(Δ1)|Ψ (t1)〉, (4)

is also not admissible, because, although it is additive, it is non-positive definite. We must
therefore conclude that a valid expression for the finite dimensional distributions, and there-
fore a probability measure for XT , cannot be extracted from the standard quantum formal-
ism.
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Two possible solutions to this problem can be proposed, corresponding to different for-
mulations/interpretations of quantum mechanics. The first is to simply remove the set XT ,
and to let the wave function be the only mathematical entity representing a quantum system.
This is, for example, the position of the Copenhagen and of the Many Worlds interpretations
[5]. For example, in [8] Heisenberg explicitly connects the quantum interference phenom-
ena and the necessity to renounce a description of the motion of the particles in terms of
trajectories. The second solution is to add a new element to the standard quantum formalism
which allows us to define the required probability measure. This is the case, for example, of
Nelson’s stochastic mechanics [11], which introduces a stochastic differential equation, and
of Bohmian mechanics [1], which introduces the guidance equation.1 For various reasons
that we do not discuss here, for many physicists none of these formulations is satisfying.

In this paper a third solution is proposed, which maintains the set XT and does not add
new elements to the quantum formalism, but rather admits the possibility that the quantum
formalism defines a set of probability measures on XT instead of a single probability. For
example, if M is the set of all the probability measures on (XT ,F), the Born rule defines
the set of probabilities

PΨ B := {P ∈ M : P [(t,Δ)] = ‖E(Δ)Ψ (t)‖2 for all (t,Δ) ∈ S}. (5)

This paper therefore proposes that, instead of a “precise” stochastic process (XT ,F,P ),
the correct mathematical model of a quantum system is an “imprecise” stochastic process
(XT ,F,PΨ ), where PΨ is a suitable set of probability measures. The word “imprecise” has
been used intentionally, because imprecise probability is a generic term which also includes
the theory of sets of probabilities [14]. The meaning of this representation is that a possible
evolution of the system is represented by a trajectory chosen at random from XT according
to any one of the probabilities of PΨ . In general, in an imprecise stochastic process there are
events without a well defined probability, and therefore the predictive power of the process
is limited to those events A for which P (A) has, at least approximately, the same value for
all the probabilities P ∈ PΨ .

A fundamental element of the proposed solution is the use of the quantum typicality rule
instead of the Born rule to define the set PΨ . Let us explain this. The set PΨ B defined by the
Born rule arguably explains the results of the statistical experiments, because it attributes a
well defined probability to any set of configurations at a given time. However, the Born rule
does not establish any correlation between the positions of the particles at different times,
and therefore it cannot define a dynamical structure for the trajectories. Therefore, if the
imprecise process (XT ,F,PBΨ ) is used to represent a macroscopic system, for example
the universe, it cannot explain the quasi-classical structure of the macroscopic evolution.
This is also a well known problem in connection with the Copenhagen and the Many Words
interpretations.

In a recent paper we proposed a new quantum rule, the quantum typicality rule, according
to which, roughly speaking, the particles follow the branches of the wave function [6]. In
the present paper a set PΨ of probabilities corresponding to the quantum typicality rule is
defined, and some of its properties are studied. This set is contained in PΨ B , i.e. the quantum
typicality rule implies the Born rule. Moreover, since the quantum typicality rule establishes
a correlation between the positions of the particles at two different times, the set PΨ arguably
explains the macroscopic quasi-classical structure of the trajectories.

1In [12] it is shown that the guidance equation is the limiting case of a general class of stochastic differential
equations which also include Nelson’s theory.
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The paper is structured as follows: in Sect. 2 the quantum typicality rule is reviewed. In
Sect. 3 a short review of the theory of imprecise probability is given. In Sect. 4 a formal
definition of the Born rule in terms of imprecise probability is given. In Sect. 5 a formal
definition of the quantum typicality rule in terms of imprecise probability is given, and the
quantum process, i.e. the proposed mathematical model of a quantum system, is defined. In
Sect. 6 two properties of quantum processes are studied. Section 7 presents a concluding
discussion about the formulation of quantum mechanics based on the quantum typicality
rule.

2 The Quantum Typicality Rule

Let us first introduce the notion of typicality in a probability space. Let (Ω,A,P ) be a
probability space, and let A and B be two measurable subsets of Ω , with P (B) 
= 0. The set
A is said to be typical relative to B if

P (A ∩ B)

P (B)
≈ 1, (6)

where ≈ 1 is understood to mean ≥ 1 − ε, with ε � 1. If A is typical relative to B , then the
overwhelming majority of the elements of B also belongs to A. From the empirical point of
view, the consequence of the typicality of A is that a single element chosen at random from
B will also belong to A. Two sets A and B are said to be mutually typical if A is typical
relative to B and vice-versa. Mutual typicality can be expressed by the condition

P (A ∩ B)

max{P (A),P (B)} ≈ 1. (7)

The notion of typicality is used in Bohmian mechanics in order to prove the quantum
equilibrium hypothesis [3] and it is also (implicitly) the basis for Boltzmann’s derivation of
the second law of thermodynamics [7].

Let us now introduce the quantum typicality rule. In its simplest and most intuitive form,
the quantum typicality rule states: suppose that the wave function of a particle is the sum
of two non-overlapping wave packets. Then, during the time over which the wave packets
are non-overlapping, the particle stays inside the support of one of the two wave packets,
without jumping to the other one.

For example, let us consider the following simple experiment (see Fig. 1). The source
S emits photons towards a beam splitter, the reflected (transmitted) photons are detected
by the detector DT (DR), and SR and ST are two slits. The quantum typicality rule states
that the photons detected, for example, by the detector DR , cross the slit SR . Even if this
assumption is very reasonable, it cannot be deduced from standard quantum mechanics,

Fig. 1
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which does not predict the trajectory of a quantum system between the preparation and
the measurement times. This feature of quantum mechanics is essentially the origin of its
difficulty in explaining the emergence of a quasi-classical world.

We can easily express the rule in a mathematical form. Let Ψ (t) = U(t)Ψ0 be the wave
function of a particle (or of a system of particles). Let us suppose that at a time t1 the
wave function can be expressed as the sum of two non-overlapping wave packets φ and
φ⊥ = Ψ (t1) − φ, and that at a time t2 > t1 the two wave packets are still non-overlapping,
i.e. U(t2 − t1)φ and U(t2 − t1)φ⊥ are non-overlapping. This implies that two subsets Δ1 and
Δ2 of the configuration space of the particle exist, such that

φ ≈ E(Δ1)Ψ (t1) and U(t2 − t1)φ ≈ E(Δ2)Ψ (t2). (8)

Due to the unavoidable spreading of the wave function, the wave packets can be only ap-
proximately non-overlapping. This is the reason for using the approximate equality symbol
in (8). The sets Δ1 and Δ2 can be considered as the supports of φ and U(t2 − t1)φ, respec-
tively. The conditions (8) can be combined to give the condition

U(t2 − t1)E(Δ1)Ψ (t1) ≈ E(Δ2)Ψ (t2). (9)

This reasoning can also be reversed: given two subsets Δ1 and Δ2 satisfying condition (9),
the wave packet φ := E(Δ1)Ψ (t1) satisfies the conditions of (8).

The quantum typicality rule states that, if the particle is in Δ2 at the time t2 and condition
(9) holds, then the particle was in Δ1 at the time t1. Since the two times are symmetric, it
is natural to assume also the reverse conclusion: if the particle is in Δ1 at the time t1 then it
will be in Δ2 at the time t2.

Let us take a further step and assume, as proposed in the introduction, that a quantum par-
ticle follows a trajectory belonging to XT . Note that this assumption is implicitly contained
in the intuitive formulation of the quantum typicality rule, because such a rule assumes that
the particle has a position at a suitable time even if no measurement is performed at that time.
Then the quantum typicality rule can be expressed by stating that condition (9) implies that
the two s-sets (t1,Δ1) and (t2,Δ2) are mutually typical.

A more compact notation can also be introduced. If S denotes the s-set (t,Δ), let Ψ (S)

denote the state U †(t)E(Δ)U(t)Ψ0. With this notation, condition (9) assumes the form

‖Ψ (S1) − Ψ (S2)‖2 ≈ 0, (10)

where S1 = (t1,Δ1) and S2 = (t2,Δ2). The norm has been squared for reasons that will
become clear in Sect. 5. Due to the presence of the approximate equality, condition (10)
must be normalized. In order to simplify the normalization, we impose the further natural
condition that ‖Ψ (S1)‖ = ‖Ψ (S2)‖. In conclusion, the quantum typicality can be expressed
as follows:

Quantum typicality rule If S1 and S2 are two s-sets such that ‖Ψ (S1)‖ = ‖Ψ (S2)‖ and

‖Ψ (S1) − Ψ (S2)‖2

‖Ψ (S1)‖2
� 1, (11)

than S1 and S2 are mutually typical.

The constraint ‖Ψ (S1)‖ = ‖Ψ (S2)‖, which was not present in the first formulation of the
rule [6], will be discussed in Sect. 5.
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The problem is now to correlate the definition of mutual typicality given by the proba-
bilistic expression (7) with the one given by the quantum expression (11). This correlation
is conceptually similar to the correlation P (S) = ‖E(Δ)Ψ (t)‖2 given by the Born rule, and
it will be realized by means of the theory of imprecise probability.

3 Theory of Imprecise Probability

A very short review is given here of the theory of sets of probabilities, which is a part of the
theory of imprecise probability [9].

Let (Ω,A) be a measurable space and M be the set of all the probability measures on
(Ω,A). Let P be an arbitrary non-empty subset of M. The upper and the lower probability
induced by P are the two set functions P∗,P ∗ : A → R+ defined by:

P∗(A) = inf
P∈P

P (A); P ∗(A) = sup
P∈P

P (A). (12)

We can easily see that P∗ and P ∗ satisfy the following properties:

0 ≤ P∗(A) ≤ P ∗(A) ≤ 1; (13)

P∗(∅) = P ∗(∅) = 0; P∗(Ω) = P ∗(Ω) = 1; (14)

P∗(A) + P ∗(Ac) = 1; (15)

P∗(A ∪ B) ≥ P∗(A) + P∗(B) for A ∩ B = ∅; (16)

P ∗(A ∪ B) ≤ P ∗(A) + P ∗(B) for A ∩ B = ∅; (17)

P∗(A) ≤ P∗(B) and P ∗(A) ≤ P ∗(B) for A ⊆ B. (18)

Equation (15) states that P∗ and P ∗ are conjugate; (16) and (17) state that P∗ is superadditive
and P ∗ is subadditive; (18) states that P∗ and P ∗ are monotone.

The triple (Ω,A,P) will be referred to as an imprecise probability space. In the case
in which Ω = XT and A = F , the more specific term imprecise stochastic process will be
used. The predictive power of an imprecise probability space is limited to those events A

for which P (A) assumes approximately the same value for all P ∈ P . Such a condition is
satisfied for example if a positive number a exists such that

|P (A) − a|
a

� 1 for all P ∈ P. (19)

Let us now study how sets of probability measures can be defined. Let D be an arbitrary
subset of A, and f∗ : D → R+ a non-negative set function. Let us define a set of probability
measures P as

P := {P ∈ M : P (A) ≥ f∗(A) for all A ∈ D}. (20)

Alternatively, the set P can be defined as

P := {P ∈ M : P (B) ≤ f ∗(B) for all B ∈ Dc}, (21)

where Dc := {B : Bc ∈ D}, and f ∗(B) := 1 − f∗(Bc).
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We now have the following lemma [9]: the set P defined by (20) is not empty iff, for any
pair of finite sequences {a1, . . . , an} and {A1, . . . ,An} of non-negative numbers and of sets
of D, the condition

n∑

i=1

ai1Ai
(ω) ≤ 1 ∀ω ∈ Ω (22)

implies the condition
∑

aif∗(Ai) ≤ 1, (23)

where 1Ai
is the characteristic function of the set Ai (see note2).

4 The Born Process

Let us first apply the theory of imprecise probability to the Born rule. As mentioned in
the introduction, the Born rule defines the set of probabilities on (XT ,F) satisfying the
condition P (S) = ‖Ψ (S)‖2 for any s-set S.

By referring to the notation used in the previous section, we have the condition that
(Ω,A) = (XT ,F), D = S and f∗(S) = ‖Ψ (S)‖2. Thus the set PΨ B defined by the Born
rule is

PΨ B := {P ∈ M : P (S) ≥ ‖Ψ (S)‖2 for all S ∈ S}. (24)

Note that Sc = S and f ∗ = f∗. We therefore have P∗(S) = P ∗(S) for all S ∈ S , which
implies that P (S) = ‖Ψ (S)‖2 for all S ∈ S and for all P ∈ PΨ B , as required. The class PΨ B

is not empty because it contains at least the probability P defined by the finite dimensional
distributions

P (S1 ∩ · · · ∩ Sn) := ‖Ψ (S1)‖2 · · · ‖Ψ (Sn)‖2,

where the assumption is made that ti 
= tj for i 
= j .
The imprecise process (XT ,F,PΨ B) will be referred to as the Born process.

5 The Quantum Process

Let us now attempt to define a set of probabilities PΨ corresponding to the quantum typi-
cality rule. The most natural definition appears to be the following: the set D is

D := {S1 ∩ S2 : S1, S2 ∈ S, S1 ∩ S2 
∈ S,‖Ψ (S1)‖ = ‖Ψ (S2)‖}, (25)

and the set function f∗ is

f∗(S1 ∩ S2) = ‖Ψ (S1)‖2 − ‖Ψ (S1) − Ψ (S2)‖2. (26)

The s-sets have been excluded from D because f∗ is not a well defined set function for
S1 ∩ S2 ∈ S . The set PΨ is then defined as

PΨ := {P ∈ M : P (S1 ∩ S2) ≥ ‖Ψ (S1)‖2 − ‖Ψ (S1) − Ψ (S2)‖2 for all S1 ∩ S2 ∈ D}. (27)

2Actually, the proof in the given reference applies only to the case of a finite set Ω .
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Let us introduce the conjugate elements f ∗ and Dc:

Dc := {S1 ∪ S2 : S1, S2 ∈ S, S1 ∪ S2 
∈ S,‖Ψ (S1)‖ = ‖Ψ (S2)‖}; (28)

f ∗(S1 ∪ S2) = ‖Ψ (S1)‖2 + ‖Ψ (S1) − Ψ (S2)‖2. (29)

We can easily see that

sup
{S2:S1∩S2∈D}

f∗(S1 ∩ S2) = ‖Ψ (S1)‖2, (30)

inf
{S2:S1∪S2∈Dc}

f ∗(S1 ∪ S2) = ‖Ψ (S1)‖2. (31)

Since

f∗(S1 ∩ S2) ≤ P (S1 ∩ S2) ≤ P (S1) ≤ P (S1 ∪ S2) ≤ f ∗(S1 ∪ S2), (32)

we obtain the condition P (S) = ‖Ψ (S)‖2 for all S ∈ S and for all P ∈ PΨ . Thus PΨ ⊂ PΨ B ,
i.e. the formal quantum typicality rule implies the Born rule. For this reason the condition

P (S1 ∩ S2) ≥ ‖Ψ (S1)‖2 − ‖Ψ (S1) − Ψ (S2)‖2 for ‖Ψ (S1)‖2 = ‖Ψ (S2)‖2 (33)

is also satisfied for S1 ∩ S2 ∈ S . Indeed in this case we have

P (S1 ∩ S2) = ‖Ψ (S1 ∩ S2)‖2 ≥ 2‖Ψ (S1 ∩ S2)‖2 − ‖Ψ (S2)‖2

= ‖Ψ (S1)‖2 − ‖Ψ (S1) − Ψ (S2)‖2.

The imprecise process (XT ,F,PΨ ) will be referred to as a quantum process, and the
defining condition (33) will be referred to as the formal quantum typicality rule. The ad-
jective “formal” has been adjoined in order to distinguish condition (33) from the quantum
typicality rule as expressed in Sect. 2, which will be referred to as the physical quantum
typicality rule. These adjectives will, however, be omitted when not required for reasons of
clarity.

The physical quantum typicality rule can be derived trivially from the formal rule. Thus,
if S1 and S2 be two s-sets such that ‖Ψ (S1)‖ = ‖Ψ (S2)‖ and

‖Ψ (S1) − Ψ (S2)‖2

‖Ψ (S1)‖2
≤ ε � 1,

than

P (S1 ∩ S2)

max{P (S1),P (S2)} = P (S1 ∩ S2)

‖Ψ (S1)‖2
≥ ‖Ψ (S1)‖2 − ‖Ψ (S1) − Ψ (S2)‖2

‖Ψ (S1)‖2
≥ 1 − ε

for all P ∈ PΨ .
The definition of the formal quantum typicality rule given by (33) appears to be the sim-

plest and most natural one, corresponding to the physical quantum typicality rule. However,
some variants of this definition are possible, which we will now examine.

Let us first discuss the constraint

‖Ψ (S1)‖2 = ‖Ψ (S2)‖2. (34)
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Such a constraint can probably be removed from both the formal and the physical formula-
tions of the rule. In this case condition (33) must be replaced by the condition

P (S1 ∩ S2) ≥ min{‖Ψ (S1)‖2,‖Ψ (S2)‖2} − ‖Ψ (S1) − Ψ (S2)‖2. (35)

If P ′
Ψ is the corresponding set of probabilities, we have P ′

Ψ ⊆ PΨ . Thus, the constraint (34)
actually gives rise to a more general set of probabilities. This fact, together with the fact that
this simplifies both the formal and the physical formulations of the quantum typicality rule,
suggests that the constraint (34) is appropriate.

Here it should be noted that the formal and the physical formulations are not totally
equivalent, because the latter acts only in the typicality regime, i.e. when

‖Ψ (S1) − Ψ (S2)‖2

‖Ψ (S1)‖2
� 1. (36)

On the contrary, condition (33) also imposes a constraint on the probability when (36)
does not hold true. In order to eliminate such a difference, condition (33) can be replaced by

P (S1 ∩ S2) ≥ ‖Ψ (S1)‖2 − ‖Ψ (S1) − Ψ (S2)‖2

for ‖Ψ (S1)‖ = ‖Ψ (S2)‖ and ‖Ψ (S1) − Ψ (S2)‖2 ≤ ε‖Ψ (S1)‖2, (37)

where ε is a suitable “small” positive number. If P ′′
Ψ is the set of probabilities defined by

this condition, then PΨ ⊆ P ′′
Ψ . The problem with this definition is its vagueness, because a

precise value for ε cannot be provided. Note also that a condition of the type

P (S1 ∩ S2) ≥ ‖Ψ (S1)‖2 − α‖Ψ (S1) − Ψ (S2)‖2 for ‖Ψ (S1)‖ = ‖Ψ (S2)‖, (38)

where α is positive number not “too small” and not “too big”, could be consistent with the
physical quantum typicality rule. Also this definition is vague.

There are conceptual reasons which suggest that the definition of the set PΨ is necessarily
vague, in the sense that slightly different definitions of PΨ are empirically indistinguishable.
These reasons are connected with the fact that we have access to the past structure of the
trajectories only through the memories of the past which are encoded in the present config-
uration of our recording devices. See [6] for a discussion of this point. This subject will be
further developed in a future paper.

Unfortunately we cannot make any statement about the consistency of the quantum typi-
cality rule, i.e. we cannot prove that the set PΨ is not empty. The problem of the consistency
of the quantum typicality rule was also discussed in [6], where some inequalities making
such a consistency plausible were proposed. Here the problem has not yet been solved in a
rigorous way, but at least it has been formulated in a precise way.

6 Two Properties of Quantum Processes

Let us study two properties of quantum processes.
In general, the probability of the intersection of two non-equal time s-sets S1 and S2 is

not well defined by PΨ , i.e. P (S1 ∩ S2) may have different values for different P ∈ PΨ .
For example, let the wave function Ψ (t) be a single wave packet, with Δ1 and Δ2 such that
‖E(Δ1)Ψ (t1)‖2 = ‖E(Δ2)Ψ (t2)‖2 = 1/2. If |t2 − t1| is large enough, we have in any case
(that is also in the case in which Δ1 ≈ Δ2) that ‖E(Δ2)Ψ (t2)−U(t2 − t1)E(Δ1)Ψ (t1)‖2 
≈ 0,
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and therefore there is no constraint preventing P [(t1,Δ1) ∩ (t2,Δ2)] from assuming a wide
range of values.

There is however a typical situation in which P (S1 ∩ S2) has (approximately) the same
value for all P ∈ PΨ . Let φ(t) := U(t − t1)φ be a wave packet which does not overlap
φ⊥(t) := Ψ (t) − φ(t) at the times t1 and t2, and let Δ1 and Δ2 be the supports of φ(t1)

and φ(t2), respectively, with ‖E(Δ1)Ψ (t1)‖ = ‖E(Δ2)Ψ (t2)‖. According to the quantum
typicality rule, S1 = (t1,Δ1) and S2 = (t2,Δ2) are mutually typical. Thus, if S ′

2 is another
s-set such that S ′

2 ∩ S2 ∈ S and ‖Ψ (S2 ∩ S ′
2)‖2 is not “too small” relative to ‖Ψ (S2)‖2, we

expect that P (S1 ∩ S ′
2) ≈ P (S2 ∩ S ′

2) = ‖Ψ (S2 ∩ S ′
2)‖2.

This result can be proven rigorously. In fact, for all P ∈ PΨ , we have the inequality:

‖Ψ (S2 ∩ S ′
2)‖2 − ‖Ψ (S1) − Ψ (S2)‖2 ≤ P (S1 ∩ S ′

2) ≤ ‖Ψ (S2 ∩ S ′
2)‖2 + ‖Ψ (S1) − Ψ (S2)‖2,

(39)
for ‖Ψ (S1)‖ = ‖Ψ (S2)‖ and S2 ∩ S ′

2 ∈ S . Thus, if S1, S2 and S ′
2 are defined as above, we

have

‖Ψ (S1) − Ψ (S2)‖2

‖Ψ (S2 ∩ S ′
2)‖2

� 1, (40)

and therefore
∣∣P (S1 ∩ S ′

2) − ‖Ψ (S1 ∩ S ′
2)‖2

∣∣
‖Ψ (S2 ∩ S ′

2)‖2
� 1. (41)

Let us prove inequality (39). We have

P (S1 ∩ S ′
2) ≥ P (S1 ∩ S2 ∩ S ′

2) = P (S1 ∩ S2) − P (S1 ∩ S2 ∩ S ′
2
c
)

≥ ‖Ψ (S2)‖2 − ‖Ψ (S1) − Ψ (S2)‖2 − P (S2 ∩ S ′
2
c
)

= ‖Ψ (S1 ∩ S ′
2)‖2 − ‖Ψ (S1) − Ψ (S2)‖2.

Moreover

P (S1 ∩ S ′
2) = P (S1 ∩ S ′

2 ∩ S2) + P (S1 ∩ S ′
2 ∩ S2

c) ≤ P (S ′
2 ∩ S2) + P (S1 ∩ S2

c)

= ‖Ψ (S2 ∩ S ′
2)‖2 + P (S1) − P (S1 ∩ S2)

≤ ‖Ψ (S1 ∩ S ′
2)‖2 + ‖Ψ (S1) − Ψ (S2)‖2.

Let us now refer to another property. In [6] and in Sect. 1 we mentioned that the trajec-
tories follow approximately the branches of the wave function. We can now give a precise
mathematical formulation of this assertion.

Let us consider again the wave packets φ(t) and φ⊥(t) defined above, and let us suppose
that they do not overlap during the entire time interval [t1, t2]. The wave packet φ(t) in the
time interval [t1, t2] is what we view as a branch of the wave function. For t ∈ [t1, t2] let Δt

be the support of φ(t), with ‖E(Δt)Ψ (t)‖ = ‖E(Δt1)Ψ (t1)‖ for t ∈ [t1, t2], and let St and
S1 denote the s-sets (t,Δt ) and (t1,Δt1) respectively. According to the reasoning of Sect. 2,
we then have

‖Ψ (S1) − Ψ (St )‖2

‖Ψ (S1)‖2
≤ ε � 1 for all t ∈ [t1, t2], (42)

and therefore, according to the quantum typicality rule:

P (S1 ∩ St )

P (S1)
≥ 1 − ε for all t ∈ [t1, t2] and P ∈ PΨ . (43)
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Let {s1, . . . , sn} be any sequence of times in the time interval [t1, t2]. Moreover, for any
P ∈ PΨ , let (S1,F ∩ S1,P (·|S1)) be the probability space obtained from (XT ,F,P ) by
restricting XT to S1. On this space let us introduce the random variable Y : S1 → [0,1]
defined by:

Y (λ) := 1

n

n∑

i=1

1Δsi
[λ(si)]. (44)

One can show that

EP (Y ) ≥ 1 − ε and P (Y ≤ 1 − δ) ≤ ε

δ
for all P ∈ PΨ , (45)

where EP (Y ) is the expectation value of Y (the dependence on the probability measure has
been explicitly shown) and δ is a suitable “small” positive number. Indeed we have

EP (Y ) = 1

P (S1)

∫

S1

Y dP =
∑

i P (S1 ∩ Ssi )

nP (S1)
≥ 1 − ε.

As to the second inequality (45), let a be a given point of the interval [0,1] and 0 ≤ Pa ≤ 1
a given value (of probability). We have

sup
{Y :P(Y≤a)=Pa }

{EP (Y )} = aPa + (1 − Pa) = 1 − Pa(1 − a).

Indeed the supremum of the expectation value is obtained when the probability density ρ(y)

of Y is shifted as much as possible on the right of the interval [0,1] compatibly with the
constraint P (Y ≤ a) = Pa , that is when it is of the form ρ(y) = δ(y − a)Pa + δ(y − 1)(1 −
Pa). The second inequality (45) is obtained by posing the condition 1 − Pa(1 − a) ≥ 1 − ε

and by replacing a with 1 − δ.
Conditions (45) hold true for any sequence of times. By choosing a “dense” sequence, the

value of Y (λ) can be assumed to correspond to the fraction of the time interval [t1, t2] that
the trajectory λ spends inside Δt . Thus, if for example ε = 10−6, from the second inequality
(45) we obtain

P (Y ≤ 1 − 10−3) ≤ 10−3. (46)

In other words, the overwhelming majority of the trajectories of S1 spend the greatest part
of the time interval [t1, t2] inside the support Δt . This is the mathematical formulation of the
assertion that the trajectories follow approximately the branches of the wave function.

7 Discussion and Conclusion

Let us summarize the formulation of quantum mechanics as a theory of imprecise probabil-
ity.

According to this formulation, a closed system of quantum particles is represented as a
quantum process (XT ,F,PΨ ), where X is the configuration space of the particles, T is a
time interval, F is the σ -algebra generated by the s-sets (or equivalently, by the cylinder sets)
and PΨ is the set of probability measures on XT defined by the formal quantum typicality
rule:

P (S1 ∩ S2) ≥ ‖Ψ (S1)‖2 − ‖Ψ (S1) − Ψ (S2)‖2 for ‖Ψ (S1)‖ = ‖Ψ (S2)‖, (47)
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where Si = (ti ,Δi) and Ψ (Si) = U †(ti)E(Δi)U(ti)Ψ0.
The meaning of this interpretation is that the trajectory followed by the quantum particles

corresponds to a trajectory chosen at random (according to any one of the probabilities of
PΨ ) from the set XT . The predictive power of this model is limited to those events A for
which P (A) has approximately the same value for all P ∈ PΨ . This is true, for example,
for the s-sets, for which P (S) = ‖Ψ (S)‖2, and for the intersections of non-equal-time s-
sets satisfying the condition described in Sect. 6. As we will now discuss, this appears to be
sufficient to explain the results of the statistical experiments and the quasi-classical structure
of the macroscopic evolution.

Since the only system which is really closed is the universe, the basic assumption is that
the entire universe is represented as a quantum process. The fact that subsystems of the
universe can also be represented as quantum processes would have to be deduced from the
basic assumption by means of reasoning analogous to that adopted in [3]. Here, we do not
make this reasoning explicit. Since there is just one universe, just one trajectory is chosen
from XT , and its properties derive from reasoning based on typicality rather than on prob-
ability: suppose that A ∈ F is the set of the trajectories satisfying a suitable property, and
that P (A) ≈ 1 for all P ∈ PΨ . This explains why a single trajectory chosen at random from
XT satisfies the property [3, 7]. For example, we have seen in Sect. 6 that the overwhelming
majority of the trajectories of XT follows approximately the branches of the universal wave
function.

This formulation of quantum mechanics is a trajectory based formulation, analogous for
example to Bohmian mechanics or to Nelson’s stochastic mechanics. In these formulations
the particles follow definite trajectories, their positions are the only observable quantities and
neither the measurement process nor the observers enter into the theory on a fundamental
level. The standard quantum measurement theory can be derived in this context on the basis
of the fact that any measurement performed in a real laboratory ultimately comes down to a
measurement of the position of a pointer [4].

A quantum process arguably explains both the results of the statistical experiments and
the quasi-classical structure of macroscopic evolution. The former explanation derives from
the fact that all the probabilities of PΨ satisfy the Born rule.

The latter explanation derives from the assumption that the universal wave function has
a branching structure, i.e. that it can be split at any time into permanently non-overlapping
wave packets, and that the supports of the wave packets have a limited extension, i.e. an
extension compatible with a well defined macroscopic configuration. When, during the time
evolution, the support of a wave packet extends over a region no longer compatible with a
well defined macroscopic configuration, it is assumed that it can be further split into smaller
wave packets with the required extension. Moreover, the macroscopic configurations corre-
sponding to the supports of the branches (or at least, to the overwhelming majority of them)
are assumed to evolve quasi-classically. The branching structure of the universal wave func-
tion is accepted by various authors [2, 13]. The quasi-classical evolution of the branches
would have to be derived from the Ehrenfest theorem and/or from reasoning analogous to
Mott’s analysis of the bubble chamber experiment [10]. Of course, all these assumptions
require a more rigorous investigation. Note that, in this formulation of quantum mechanics,
the nature of the branching process is well defined, namely a branch is a spatially non-
overlapping wave packet. This is not the case, for example, in the Many Worlds interpre-
tation, in which the preferred-basis problem appears to be still open. Given the branching
structure for the universal wave function described above, the quasi-classical structure of the
trajectory of our universe then derives from the fact that the overwhelming majority of the
trajectories follow approximately the branches of the wave function, as shown in Sect. 6.
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A last remark regarding the role played by the set XT in a quantum process: usually,
in quantum mechanics position variables are considered “hidden variables”. In this case,
however, XT is the sample space of an (imprecise) probability space, and therefore such a
definition appears to be inappropriate. The set XT has no empirical content, i.e. no empirical
prediction can be derived from it. On the contrary, all the predictions can be derived from
the set PΨ alone, that is from the wave function. However XT cannot be removed from a
quantum process, for the same reason for which the sample space cannot be removed from
a probability space. In other words, without the set XT we can calculate everything, but we
have serious coherence problems. This situation appears to reflect the situation of standard
quantum mechanics.
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